10/100 Bridging 10/100BASE-TX to 100BASE-FX Multiport

Point System ${ }^{\text {TM }}$ Slide-In-Module Media Converters CBFTF10xx-1xx

- Extend Network Distance

100BASE-TX Fast Ethernet Hub


```
- Extend network distance Extend network distance up to 120 km .
```

Bridging media converter will provide conversion and integration solutions for half duplex and full duplex environments.

Specifications

Standards	IEEE Std $802.3^{\text {TM }}$	Switches	SW1: TP1: Enable/Disable Auto-
Data Rate	10Mbps; 100Mbps		negotiation
Filtering Addresses	4K MAC addresses		SW2: TP1: Force 10Mbps or 100Mbps with Auto-negotiation OFF
Filtering \& Forwarding Rate	14,880pps for Ethernet; 148,800 pps for Fast Ethernet		SW3: TP1: Force Half or Full duplex with Auto-negotiation off
RAM Buffers	256 KB		SW4: FBR: Half or Full duplex
Max Packet Size	1536 bytes		SW5: Auto-cross enable on/off
Fiber Optic Connect	or Specs		SW6: Fiber Redundancy Enable/Disable (xBFTF10xx-14x only)
CBFTF1011-1x0 \& CBFTF1013-1x0 \& CBFTF1018-1x0 \&	Min TX PWR: - 19.0 dBm Max TX PWR: -14.0 dBm RX Sensitivity: -30.0 dBm		SW7: TP2: Enable/Disable Autonegotiation
CBFTF1039-1x0	Max In PWR: -14.0 dBm Link Budget: 11.0 dB		SW8: TP2: Force 10Mbps or 100Mbps with Auto-negotiation off
CBFTF1014-1x0	Min TX PWR: -15.0 dBm Max TX PWR: -8.0 dBm RX Sensitivity: -31.0 dBm Max In PWR: -8.0 dBm Link Budget: 16.0 dB		SW9: TP2: Force Half or Full duplex with Auto-negotiation off SW10: Enable/Disable monitor on TP2
CBFTF1019-1x0	Link Budget: 16.0 dB Min TX PWR: -15.2 dBm Max TX PWR: -8.0 dBm	Unit LED	The TP LEDs use a bi-color LED that can be turned on green or yellow. Green - ON power applied to board
	RX Sensitivity: -32.5 dBm Max In PWR: -3.0 dBm Link Budget: 17.3 dB	Port LEDs	Copper: Duplex/Link/Activity Yellow - ON: LInk; BLINK: activity Copper: 10Mbps / 100Mbps Yellow - 10Mbps Green - 100Mbps Fiber: Link/Activity Green - ON: Link; BLINK - activity Fiber: Duplex Green - ON: Full; OFF: half
CBFTF1015-1x0	Min TX PWR: -8.0 dBm Max TX PWR: - 2.0 dBm RX Sensitivity: -34.0 dBm Max In PWR: -7.0 dBm Link Budget: 26.0 dB		
CBFTF1016-1x0 \& CBFTF1017-1x0	Min TX PWR: -5.0 dBm Max TX PWR: 0.0 dBm		
	RX Sensitivity: -34.0 dBm Max In PWR: -7.0 dBm Link Budget: 29.0 dB	Dimensions	CBFTF10xx-11x: Width: 0.86 " $[22 \mathrm{~mm}]$ Depth: 5.0 " $[127 \mathrm{~mm}]$
CBFTF1035-100	Min TX PWR: 0.0 dBm Max TX PWR: 5.0 dBm RX Sensitivity: -36.0 dBm Max In PWR: -3.0 dBm Link Budget: 36.0 dB		Height: 3.4" [86 mm] CBFTF10xx-12x \& $-14 x$: Width: 1.72 " $[44 \mathrm{~mm}]$ Depth: $5.0^{\prime \prime}[127 \mathrm{~mm}]$ Height: $3.4^{" ~}[86 \mathrm{~mm}$]
Single Fiber Products		Power Consumption	CBFTF10xx-11x: 4.9 watts
$\begin{aligned} & \text { CBFTF1029-1x0 \& } \\ & \text { CBFTF1029-1x1 } \end{aligned}$	Min TX PWR: -13.0 dBm Max TX PWR: -6.0 dBm RX Sensitivity: -32.0 dBm Max In PWR: -3.0 dBm Link Budget: 19.0 dB	Environment	See chassis specifications
		Shipping Weight	$1 \mathrm{lb} .[0.45 \mathrm{~kg}$]
		Regulatory	FCC Class A, VCCI Class 1,
$\begin{aligned} & \text { CBFTF1029-1x2 \& } \\ & \text { CBFTF1029-1x3 } \end{aligned}$	Min TX PWR: -8.0 dBm Max TX PWR: -3.0 dBm RX Sensitivity: -33.0 dBm Max In PWR: -3.0 dBm Link Budget: 25.0 dB	Compliance	EN61000, CE Mark
		Warranty	Lifetime

Transition Networks, Inc. 6475 City West Parkway Minneapolis, MN 55344 USA
©2005 Transition Networks, Inc.
All trademarks are the property of their respective owners.

-110 models can be used with any Point System ${ }^{\text {TM }}$ Chassis (see pages 17 \& 18)		
Product Number	Port One	Port Two
CBFTF1011-110	$\begin{aligned} & \text { (2) } 10 / 100 \mathrm{BASE}- \\ & \text { tX (RJ-45) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft} .]} \end{aligned}$	(1) 100BASE-FX 1300 nm multimode (ST) [2 km / 1.2 miles]
CBFTF1013-110	$\begin{aligned} & \text { (2) } 10 / 100 \mathrm{BASE}- \\ & \text { tX (RJ- } \mathrm{R} 5 \text {) } \\ & \text { [100 } / 328 \mathrm{ft} .] \end{aligned}$	(1) 100BASE-FX 1300 nm multimode (SC) [2 km / 1.2 miles]
CBFTF1039-110	$\begin{aligned} & \text { (2) } 10 / 100 \mathrm{BASE}- \\ & \text { TX (RJ- } 45 \text {) } \\ & \text { [100 } / 328 \mathrm{ft} .] \end{aligned}$	(1) 100BASE-FX 1300 nm multimode (LC) [2 km / 1.2 miles]
CBFTF1018-110	$\begin{aligned} & \text { (2) } 10 / 100 \mathrm{BASE}- \\ & \text { TX (RJ-45) } \\ & \text { [100 m / } 328 \mathrm{ft} \text {.] } \end{aligned}$	(1) 100BASE-FX 1300 nm multimode (MT-RJ) [2 km / 1.2 miles]
CBFTF1014-110	$\begin{aligned} & \text { (2) } 10 / 100 \mathrm{BASE}- \\ & \text { TX (RJ-45) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft} .]} \end{aligned}$	(1) 100BASE-FX 1310 nm single mode (SC) [20 km / 12.4 miles]
CBFTF1019-110	$\begin{aligned} & \text { (2) } 10 / 100 \mathrm{BASE}- \\ & \text { TX (RJ-45) } \\ & \text { [100 m / } 328 \mathrm{ft} \text {.] } \end{aligned}$	(1) 100BASE-FX 1310 nm single mode (LC) [20 km / 12.4 miles]
CBFTF1015-110	$\begin{aligned} & \text { (2) } 10 / 100 \text { BASE- } \\ & \text { TX (RJ-45) } \\ & \text { [100 m/328 ft.] } \end{aligned}$	(1) 100BASE-FX 1310 nm single mode (SC) [$40 \mathrm{~km} / 24.9$ miles]
CBFTF1016-110	$\begin{aligned} & \text { (2) } 10 / 100 \mathrm{BASE}- \\ & \text { TX (RJ- } \mathrm{R} 5) \\ & {[100 \mathrm{~m} / 328 \mathrm{ft} .]} \end{aligned}$	(1) 100BASE-FX 1310nm single mode (SC) [$60 \mathrm{~km} / 37.3$ miles]
CBFTF1017-110	$\begin{aligned} & \text { (2) } 10 / 100 \text { BASE- } \\ & \text { TX (RJ-45) } \\ & \text { [100 } \mathrm{m} / 328 \mathrm{ft} .] \end{aligned}$	(1) 100BASE-FX 1550 nm single mode (SC) [80 km / 49.7 miles]
CBFTF1035-110	$\begin{aligned} & \text { (2) } 10 / 100 \mathrm{BASE}- \\ & \text { TX (RJ- } 45 \text {) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft} .]} \end{aligned}$	(1) 100BASE-FX 1550 nm single mode (SC) [120 km / 74.6 miles]
Single Fiber Products Note: Recommended use in pairs (see next pages)		
CBFTF1029-110	(2) $10 / 100 B A S E-$ TX (RJ-45) $[100 \mathrm{~m} / 328 \mathrm{ft}$.	(1) 100BASE-FX 1310 nm TX / 1550nm RX single fiber single mode (SC) [20 km / 12.4 miles]
CBFTF1029-111	$\begin{aligned} & \text { (2) } 10 / 100 \mathrm{BASE}- \\ & \text { tX (RJ-45) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft} .]} \end{aligned}$	(1) 100BASE-FX 1550 nm TX / 1310nm RX single fiber single mode (SC) [20 km / 12.4 miles]
CBFTF1029-112	$\begin{aligned} & \text { (2) } 10 / 100 B A S E- \\ & \text { TX (RJ- } 45 \text {) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft} .]} \end{aligned}$	(1) 100BASE-FX 1310 nm TX / 1550nm RX single fiber single mode (SC) [$40 \mathrm{~km} / 24.9$ miles]
CBFTF1029-113	$\begin{aligned} & \text { (2) } 10 / 100 \mathrm{BASE}- \\ & \text { TX (RJ-45) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft} .]} \end{aligned}$	(1) 100BASE-FX 1550 nm TX / 1310nm RX single fiber single mode (SC) [$40 \mathrm{~km} / 24.9$ miles]

-120 models cannot be used with the 1-Slot Point System ${ }^{T M}$ Chassis (see pages 17 \& 18)		
Product Number	Port One	Port Two
CBFTF1011-120	$\begin{aligned} & \text { (5) 10/100BASE- } \\ & \text { TX (RJ-45) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft} .]} \end{aligned}$	(1) 100BASE-FX 1300 nm multimode (ST) [2 km / 1.2 miles]
CBFTF1013-120	$\begin{aligned} & \text { (5) 10/100BASE- } \\ & \text { TX (RJ-45) } \\ & \text { [100 m / } 328 \mathrm{ft} \text {.] } \end{aligned}$	(1) 100BASE-FX 1300 nm multimode (SC) [2 km / 1.2 miles]
CBFTF1039-120	$\begin{aligned} & \text { (5) } 10 / 100 \mathrm{BASE}- \\ & \text { TX (RJ-45) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft} .]} \end{aligned}$	(1) 100BASE-FX 1300 nm multimode (LC) [2 km / 1.2 miles]
CBFTF1018-120	$\begin{aligned} & \text { (5) 10/100BASE- } \\ & \text { TX (RJ-45) } \\ & \text { [100 m / } 328 \mathrm{ft} \text {.] } \end{aligned}$	(1) 100BASE-FX 1300 nm multimode (MT-RJ) [2 km / 1.2 miles]
CBFTF1014-120	$\begin{aligned} & \text { (5) 10/100BASE- } \\ & \text { TX (RJ-45) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft} .]} \end{aligned}$	(1) 100BASE-FX 1310 nm single mode (SC) [20 km / 12.4 miles]
CBFTF1019-120	$\begin{aligned} & \text { (5) 10/100BASE- } \\ & \text { XX (RJ-45) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft}]} \end{aligned}$	(1) 100BASE-FX 1310nm single mode (LC) [20 km / 12.4 miles]
CBFTF1015-120	$\begin{aligned} & \text { (5) 10/100BASE- } \\ & \text { TX (RJ-45) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft} .]} \end{aligned}$	(1) $100 B A S E-F X ~ 1310 \mathrm{~nm}$ single mode (SC) [$40 \mathrm{~km} / 24.9$ miles]
CBFTF1016-120	$\begin{aligned} & \text { (5) 10/100BASE- } \\ & \text { TX (RJ-45) } \\ & \text { [100 m / 328 ft.] } \end{aligned}$	(1) 100BASE-FX 1310 nm single mode (SC) [$60 \mathrm{~km} / 37.3$ miles]
CBFTF1017-120	$\begin{aligned} & \text { (5) 10/100BASE- } \\ & \text { tX (RJ-45) } \\ & \text { [100 m / 328 ft.] } \end{aligned}$	(1) 100BASE-FX 1550 nm single mode (SC) [80 km / 49.7 miles]
CBFTF1035-120	$\begin{aligned} & \text { (5) } 10 / 100 \mathrm{BASE-} \\ & \text { TX (RJ-45) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft} .]} \end{aligned}$	(1) 100BASE-FX 1550 nm single mode (SC) [120 km / 74.6 miles]
Single Fiber Products Note: Recommended use in pairs (see next pages)		
CBFTF1029-120	$\begin{aligned} & \text { (5) 10/100BASE- } \\ & \text { TX (RJ-45) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft} .]} \end{aligned}$	(1) 100BASE-FX 1310 nm TX / 1550nm RX single fiber single mode (SC) [20 km / 12.4 miles]
CBFTF1029-121	$\begin{aligned} & \text { (5) } 10 / 100 \mathrm{BASE}- \\ & \text { TX (RJ- } \mathrm{R} \text {) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft} .]} \end{aligned}$	(1) 100BASE-FX 1550nm TX / 1310nm RX single fiber single mode (SC) [20 km / 12.4 miles]
CBFTF1029-122	$\begin{aligned} & \text { (5) 10/100BASE- } \\ & \text { TX (RJ-45) } \\ & \text { [100 m / } 328 \mathrm{ft} .] \end{aligned}$	(1) 100BASE-FX 1310 nm TX / 1550nm RX single fiber single mode (SC) [$40 \mathrm{~km} / 24.9$ miles]
CBFTF1029-123	$\begin{aligned} & \text { (5) } 10 / 100 \mathrm{BASE}- \\ & \text { TX (RJ- } 45 \text {) } \\ & \text { [100 } / 328 \mathrm{ft} .] \end{aligned}$	(1) 100BASE-FX 1550 nm TX / 1310nm RX single fiber single mode (SC) [$40 \mathrm{~km} / 24.9$ miles]

-140 models cannot be used with the 1-Slot Point System ${ }^{\text {TM }}$ Chassis (see pages 17 \& 18)		
Product Number	Port One	Port Two
CBFTF1011-140	$\begin{aligned} & \text { (4) } 10 / 100 \text { BASE- } \\ & \text { TX (RJ-45) } \\ & \text { [100 m / } 328 \mathrm{ft} \text {.] } \end{aligned}$	(2) 100BASE-FX 1300 nm multimode (ST) [2 km / 1.2 miles]
CBFTF1013-140	$\begin{aligned} & \text { (4) } 10 / 100 \mathrm{BASE}- \\ & \text { TX (RJ-45) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft} .]} \end{aligned}$	(2) 100BASE-FX 1300 nm multimode (SC) [$2 \mathrm{~km} / 1.2$ miles]
CBFTF1039-140	$\begin{aligned} & \text { (4) 10/100BASE- } \\ & \text { TX (RJ-45) } \\ & \text { [100 m/328 ft.] } \end{aligned}$	(2) 100BASE-FX 1300 nm multimode (LC) [2 km / 1.2 miles]
CBFTF1018-140	$\begin{aligned} & \text { (4) } 10 / 100 \mathrm{BASE}- \\ & \text { TX (RJ-45) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft} .]} \end{aligned}$	(2) 100BASE-FX 1300 nm multimode (MT-RJ) [2 km / 1.2 miles]
CBFTF1014-140	$\begin{aligned} & \text { (4) 10/100BASE- } \\ & \text { TX (RJ-45) } \\ & \text { [100 m / 328 ft.] } \end{aligned}$	(2) 100BASE-FX 1310 nm single mode (SC) [20 km / 12.4 miles]
CBFTF1019-140	$\begin{aligned} & \text { (4) } 10 / 100 B A S E- \\ & \text { X } \mathrm{X}(\mathrm{RJ}-45) \\ & {[100 \mathrm{~m} / 328 \mathrm{ft}]} \end{aligned}$	(1) 100BASE-FX 1310nm single mode (LC) [20 km / 12.4 miles]
CBFTF1015-140	$\begin{aligned} & \text { (4) 10/100BASE- } \\ & \text { TX (RJ-45) } \\ & \text { [100 m/328 ft.] } \end{aligned}$	(2) 100BASE-FX 1310 nm single mode (SC) [$40 \mathrm{~km} / 24.9$ miles]
CBFTF1016-140	$\begin{aligned} & \text { (4) 10/100BASE- } \\ & \text { TX (RJ-45) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft} .]} \end{aligned}$	(2) $100 B A S E-F X ~ 1310 \mathrm{~nm}$ single mode (SC) [$60 \mathrm{~km} / 37.3$ miles]
CBFTF1017-140	$\begin{aligned} & \text { (4) 10/100BASE- } \\ & \text { (X (RJ-45) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft}]} \end{aligned}$	(2) 100BASE-FX 1550 nm single mode (SC) [$80 \mathrm{~km} / 49.7$ miles]
CBFTF1035-140	$\begin{aligned} & \text { (4) 10/100BASE- } \\ & \text { 1X (RJJ-45) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft}]} \end{aligned}$	(2) 100BASE-FX 1550 nm single mode (SC) [120 km / 74.6 miles]
Single Fiber Products Note: Recommended use in pairs (see next pages)		
CBFTF1029-140	$\begin{aligned} & \text { (4) } 10 / 100 \mathrm{BASE}- \\ & \text { tX (RJ-45) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft} .]} \end{aligned}$	(2) 100BASE-FX 1310 nm TX / 1550nm RX single fiber single mode (SC) [$20 \mathrm{~km} / 12.4$ miles]
CBFTF1029-141	$\begin{aligned} & \text { (4) 10/100BASE- } \\ & \text { TX (RJ-45) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft} .]} \end{aligned}$	(2) 100BASE-FX 1550 nm TX / 1310nm RX single fiber single mode (SC) [$20 \mathrm{~km} / 12.4$ miles]
CBFTF1029-142	$\begin{aligned} & \text { (4) 10/100BASE- } \\ & \text { TX (RJ-45) } \\ & \text { [100 m/328 ft.] } \end{aligned}$	(2) 100BASE-FX 1310 nm TX / 1550nm RX single fiber single mode (SC) [$40 \mathrm{~km} / 24.9$ miles]
CBFTF1029-143	$\begin{aligned} & \text { (4) 10/100BASE- } \\ & \text { TX (RJ-45) } \\ & {[100 \mathrm{~m} / 328 \mathrm{ft} .]} \end{aligned}$	(2) 100BASE-FX 1550nm TX / 1310nm RX single fiber single mode (SC) [$40 \mathrm{~km} / 24.9$ miles]

Transition Networks, Inc. 6475 City West Parkway

ADVANGED PRODUGT FEATURES

－Auto－Negotiation（802．3u）

Auto－Negotiation allows devices to perform automatic configuration to achieve the best possible mode of operation over a link．Devices with this feature will broadcast their speed（10Mbps，100Mbps，etc．）and duplex（half／full）capabilities to other devices and negotiate the best mode of operation between the two devices．
－No user intervention required to determine best mode of operation
－Optimal link established automatically
－Quick and easy installation
While the inclusion of this feature is beneficial，the ability to disable it is equally beneficial．In the event of a non－negotiating end device trying to connect to a negotiating device，the mode of operation will drop to the least common denominator between the two devices（i．e．100Mbps，half－duplex）．Disabling this feature gives the user the ability to force the connection to the best mode of operation when trying to link with a non－negotiating device．Most Transition converters with Auto－Negotiation will allow you to disable this feature．

－AutoCross ${ }^{\text {TM }}$

Automatically detects and configures the twisted pair port on the converter to the correct MDI or MDI－X configuration．
－Eliminates an entire category of troubleshooting
－No need to identify cable type－straight－through or crossover
－No user intervention required to determine correct button／switch settings

－Far End Fault（802．3u）

Far End Fault（FEF）is a troubleshooting feature that is generally used in conjunction with Link Pass Through to notify both end devices of a loss of link．In the event of a loss of the fiber RX signal on the far end converter the converter will automatically generate a Far End Fault signal and send it on its TX fiber port to notify the near end converter of a fiber link loss．Link Pass Through will then disable the copper links on both ends；alerting both end devices of network trouble（see diagram below）．
－Both end devices automatically notified of link loss
－Prevents loss of valuable data unknowingly transmitted over invalid link
－Allows for quick diagnosis and resolution of network problems

Transition Networks＇s media converters that include the FEF feature do not need to be used as pictured above as they will work with other network devices that support Far End Fault per IEEE standards．

If someone tells you media conversion is a commodity product that anyone can bring to market，they probably haven＇t looked at the extensive product suite offered by Transition Networks．With the industry＇s most comprehensive offering of full－ featured products，Transition＇s media converters stand out as＂the choice＂among industry IT professionals．

Generally，media converters are low－level OSI model devices with no IP or MAC addresses and therefore are transparent to the network．This＂transparency＂makes them very inexpensive and easy to use，but also can make troubleshooting the network very difficult．In an effort to overcome this difficulty and to make media converters ＂visible＂to network managers，Transition has designed their full－featured products to include the most advanced features on the market today．

ADVANGED PRODUCT FEATURES

- Automatic Link Restoration

Transition Networks's converters will automatically re-establish link in all network conditions.

- No need to reset devices

Transition Networks's converters will automatically re-establish link when connected to switches if link was lost. With other manufacturers' converters the user must reset the converter to re-establish the link.

- Auto-Negotiation Enabled

Automatic Link Restoration allows the users to continue using Auto-Negotiation with Link Loss Notification features. With other manufacturers' converters the user must disable Auto-Negotiation and hard set the link.

- Link Pass Through Activated in both directions

Automatic Link Restoration on Transition Networks's products allows users to continue using Link Loss Notification feature activated in both directions. Many competitive solutions allow for Link Loss Notification activation only in one direction. If Link Loss feature is activated in both directions, competitive products are put in a "deadly embrace" and they cannot restore the link without resetting the converters.

- Remote Firmware Upgrade

New product features are continuously being added to Transition Networks's products. These improvements are also available for many products already installed in the field. Management modules and many media converters can be updated remotely via firmware upgrade. The remote upgrade feature eliminates the need to ship the products back to the manufacturer. The firmware upgrades can be performed by a user either locally via a Console port or remotely via TFTP.
The upgrades do not require the reconfiguration of the SNMP management or converter feature settings.

- Source Address Change

Select bridging media converters are capable of detecting and reporting changes in the MAC (Ethernet hardware) address of the attached equipment. This feature is very useful when administrators intend that only a particular physical device be attached to a particular port.
When the MAC address of a connected device changes (new device is inserted) the administrator receives the trap with the notification of a change.

- Single Fiber

Single fiber technology offers a $\mathbf{5 0 \%}$ savings in fiber utilization. It is an attractive solution to maximize the usage of a limited number of fiber runs.
In a traditional optical link, a fiber pair consists of two uni-directional strands. The single fiber technology multiplexes two optical wavelengths of 1310 nm and 1550 nm into a single strand fiber. In a single fiber media converter each wavelength is responsible for either the transmit or receive function.
Consequently, the bi-directional transmission is achieved by using a single strand. The converters in a single fiber scenario "match" each other's wavelengths. Converter A transmits at the wavelength of 1310 nm and receives at 1550 nm while the other converter transmits at 1550 nm and receives at 1310 nm . Therefore, converters are usually used in pairs.

Single Fiber

Single fiber technology is available on all Transition Networks Media Converters in maximum distance ranges from 20 to 80 km

